99 research outputs found

    Atg16L1 as a Novel Biomarker and Autophagy Gene for Diabetic Retinopathy.

    Get PDF
    Objective: Accumulating evidence suggests the critical role of autophagy in the pathogenesis of diabetic retinopathy (DR). In the current study, we aim to identify autophagy genes involved in DR via microarray analyses. Methods: Gene microarrays were performed to identify differentially expressed lncRNAs/mRNAs between normal and DR retinas. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of lncRNA-coexpressed mRNAs were used to determine the related pathological pathways and biological modules. Real-time polymerase chain reactions (PCR) were conducted to validate the microarray analyses. Results: A total of 2474 significantly dysregulated lncRNAs and 959 differentially expressed mRNAs were identified in the retina of DR. Based upon Signalnet analysis, Bcl2, Gabarapl2, Atg4c, and Atg16L1 participated the process of cell death in DR. Moreover, real-time PCR revealed significant upregulation of Atg16L1. Conclusion: This study indicated the importance and potential role of Atg16L1, one of the autophagy genes, as a biomarker in DR development and progression

    Response of Soil Respiration to Soil Temperature and Moisture in a 50-Year-Old Oriental Arborvitae Plantation in China

    Get PDF
    China possesses large areas of plantation forests which take up great quantities of carbon. However, studies on soil respiration in these plantation forests are rather scarce and their soil carbon flux remains an uncertainty. In this study, we used an automatic chamber system to measure soil surface flux of a 50-year-old mature plantation of Platycladus orientalis at Jiufeng Mountain, Beijing, China. Mean daily soil respiration rates (Rs) ranged from 0.09 to 4.87 µmol CO2 m−2s−1, with the highest values observed in August and the lowest in the winter months. A logistic model gave the best fit to the relationship between hourly Rs and soil temperature (Ts), explaining 82% of the variation in Rs over the annual cycle. The annual total of soil respiration estimated from the logistic model was 645±5 g C m−2 year−1. The performance of the logistic model was poorest during periods of high soil temperature or low soil volumetric water content (VWC), which limits the model's ability to predict the seasonal dynamics of Rs. The logistic model will potentially overestimate Rs at high Ts and low VWC. Seasonally, Rs increased significantly and linearly with increasing VWC in May and July, in which VWC was low. In the months from August to November, inclusive, in which VWC was not limiting, Rs showed a positively exponential relationship with Ts. The seasonal sensitivity of soil respiration to Ts (Q10) ranged from 0.76 in May to 4.38 in October. It was suggested that soil temperature was the main determinant of soil respiration when soil water was not limiting

    PM2.5 Concentration Differences between Various Forest Types and Its Correlation with Forest Structure

    No full text
    The Plain Forestation Project is an important measure designed to alleviate air pollution in Beijing, the capital of China. Ten commonly cultivated forest types of the Plain Forestation Project were studied at three growth stages of leaves. The particulate matter (PM)2.5 concentrations and forest structures were surveyed to analyze the PM2.5 concentration differences between different forest types, and establish a linear relationship between forest structures and PM2.5 concentration differences. The results suggested that forest ecosystems can block and capture PM2.5 from the air. Forests with luxuriant foliage are most effective in removing PM2.5 from the air. The average PM2.5 mass concentration in the Leaf-on Period (LOP) was the lowest when compared with other periods. The PM2.5 concentrations in the forest usually were higher than the control. Correspondingly, PM2.5 concentration indexes were negative values during daytime, but this results were reversed at night. Forests can reduce the diffusion rate of PM2.5 leading to PM2.5 were detained in the forest during daytime, and play an important role in the adsorption or deposition of particulate matter at night. Forest structure was primary reason of the PM2.5 concentration difference between different forests. The PM2.5 concentration index was positively correlated to canopy density, leaf area index (LAI), and mean diameter at breast height (DBH), and negatively correlated to the average tree height (height), forestland area, grass coverage and height

    Retrospective Analysis of Tree Decline Based on Intrinsic Water-Use Efficiency in Semi-Arid Areas of North China

    No full text
    Long-term tree growth is significantly affected by climate change, which have become a global concern. Tree-ring width and isotopic information can show how trees respond to climate change on a long-term scale and reveal some phenomena of tree decline or death. In this study, we used isotopic techniques and investigated annual changes in carbon isotope composition and tree-ring width of Populus simonii Carr. in Zhangbei, as well as trends in tree-ring carbon discrimination (Δ13C) and iWUE in normal, mildly declining and severely declining trees, in order to make a retrospective analysis and further understand the process of tree decline. We found that there were significant differences (p < 0.01 **) in δ13C, Δ13C, ci and iWUE at different decline stages, meaning that the δ13C and iWUE could be new indicators of tree health. The iWUE of all groups increased significantly, while the growth rate of declined P. simonii was much higher than that of normal growth P. simonii. According to the analysis, there may be a threshold of iWUE for healthy trees, which once the threshold value is exceeded, it indicates that trees are resistant to adversity and their growth is under stress. Similarly, the changing trend of BAI supports our conclusion with its changes showed that tree growth became slower and slower as degradation progressed. iWUE inferred from tree-ring stable carbon isotope composition is a strong modulator of adaptation capacity in response to environmental stressors under climate change. Elevated annual temperatures and increased groundwater depth are all contributing to the decline of P. simonii in north China

    Environmental and physiological controls on diurnal and seasonal patterns of biogenic volatile organic compound emissions from five dominant woody species under field conditions

    No full text
    Biogenic volatile organic compounds (BVOCs) play essential roles in tropospheric chemistry, on both regional and global scales. The emissions of large quantities of species-specific BVOC depend not only on environmental (temperature, T; photosynthetically active radiation, PAR), but also physiological parameters (i.e. net photosynthetic rate, Pn; transpiration rate, Tr; stomatal conductance, gs and intercellular CO2 concentration, Ci). Here, isoprene, monoterpene and sesquiterpene emissions were determined from five dominant mature woody tree species in northern China, which are two evergreen conifers (Pinus tabuliformis and Platycladus orientalis) and three broad-leaved deciduous trees (Quercus variabilis, Populus tomentosa and Robinia pseudoacacia). A dynamic enclosure technique combined with GC-MS was used to sample BVOCs and analyse their fractional composition at daily and annual scales. The diurnal data showed that both isoprene and monoterpene emissions increased with increasing temperature, and reached their maximum emission rates in the peak of growing season for both coniferous and broad-leaved species. The emissions of individual compound within the monoterpenes and sesquiterpenes were statistically correlated with each other for all species. Furthermore, some oxygenated monoterpene emissions were highly correlated to sesquiterpenes in all tree species. Linking BVOC emissions to environmental and leaf physiological parameters exhibited that monoterpene emissions were linearly and positively correlated to the variation of T, PAR, Pn and Tr, while their relationship to gs and Ci is more complex. Collectively, these findings provided important information for improving current model estimations in terms of the linkage between BVOC emissions and plant physiological traits. The data presented in this study can be used to update emission capacity used in models, as this is the first time of reporting BVOC emissions from five dominant species in this region. The whole-year measurement of leaf-level BVOCs can also advance our understanding of seasonal variation in BVOC emissions

    Oxygen and Hydrogen Isotopes of Precipitation in a Rocky Mountainous Area of Beijing to Distinguish and Estimate Spring Recharge

    No full text
    Stable isotopes of oxygen and hydrogen were used to estimate seasonal contributions of precipitation to natural spring recharge in Beijing’s mountainous area. Isotopic compositions were shown to be more positive in the dry season and more negative in the wet season, due to the seasonal patterns in the amount of precipitation. The local meteoric water line (LMWL) was δ2H = 7.0 δ18O − 2.3 for the dry season and δ2H = 5.9 δ18O − 10.4 for the wet season. LMWL in the two seasons had a lower slope and intercept than the Global Meteoric Water Line (p < 0.01). The slope and intercept of the LMWL in the wet season were lower than that in the dry season because of the effect of precipitation amount during the wet season (p < 0.01). The mean precipitation effects of −15‰ and −2‰ per 100 mm change in the amount of precipitation for δ2H and δ18O, respectively, were obtained from the monthly total precipitation and its average isotopic value. The isotopic composition of precipitation decreased when precipitation duration increased. Little changes in the isotopic composition of the natural spring were found. By employing isotope conservation of mass, it could be derived that, on average, approximately 7.2% of the natural spring came from the dry season precipitation and the rest of 92.8% came from the wet season precipitation

    The effectiveness of mulching practices on water erosion control: A global meta-analysis

    No full text
    Mulching is widely recognized as an effective soil and water conservation measure all over the world. Nevertheless, a comprehensive evaluation of mulching's effectiveness in controlling soil erosion and the influencing factors is still lacking. A global meta-analysis based on 421 runoff and 512 soil loss observations from 90 publications was conducted to evaluate the effectiveness of mulching in reducing runoff and soil loss across a variety of variables (i.e. mulch type, mulch coverage and application rates, rainfall intensity, land use, soil texture, slope gradient, and slope length). Our meta-analysis shows that overall, mulching significantly reduced runoff and soil loss by 47.4% and 76.2%, respectively. Straw mulch and wood-based mulch are generally more effective in reducing runoff and soil loss than rock fragments, highlighting the effectiveness of organic materials in controlling water erosion. In general, increasing mulch coverage and application rates resulted in a significant reduction in runoff and soil loss. It is recommended, however, that mulch coverage should be at least 60% based on the trade-off between economic costs and ecological benefits, which can reduce runoff and soil loss by approximately 50% and 80%, respectively. An application rate of 0.3–0.4 kg m−2 for straw and 0.6–0.8 kg m−2 for wood-based mulch should be sufficient to effectively control soil erosion. The study also found that mulching is more effective in post-fire forests on medium-textured soils and less effective on steep slopes (>60%) and under both natural and simulated extremely heavy rainfall conditions (>90 mm/h). Overall, this study provides further insights into the impact of mulching on water erosion globally and proposes an overall framework for a precision mulching strategy (P-M-S) to guide the implementation of mulching in soil erosion control
    • …
    corecore